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Abstract

This document pertains to Manufacturing Scheduler, a computer program produced by Flux Inc.
for Yellow Pages Group (YPG). Manufacturing Scheduler provides centralized managing of business-
related schedules for YPG products.

In this document we describe a proposed syntax for the representationof formulasthat are used to
calculate variable dates based on single fixed parameter values, herein referred to asfixed dates.
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1 Quick overview

1.1 Example formulas

Formulas are evaluated left to right. Every statement changes the date found on the left and produces
some date that will be used by statement to its right. The firststatement uses the event’sfixed dateas it’s
argument. The date returned by the last statement is the datethat will be visible in calendar.

1.1.1 Single statements

+ 2
Will add two days to a fixed date.
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- 4 WORKDAYS
Will return the date of fourth work day before the specified fixed date. Work days occur Monday through
Friday, and exclude locally-relevant holidays.

+ 1 TUESDAYS
Will return the date corresponding to the first Tuesday afterthe specified fixed date. If the fixed date falls
on a Tuesday then the return value is exactly one week afterward.

+ 0 TUESDAYS
Will return the date corresponding to the first Tuesday afterthe fixed date. If the fixed date falls on a
Tuesday then the return value will equal the fixed date.

+ 0 WORKDAYS
Returns the first working day after the fixed date if the fixed date falls on a holiday or a weekend; other-
wise, it simply returns the fixed date itself.

1.1.2 Multiple statements

- 0 FIRST_DAYS_OF_MONTH +0 WEDNESDAYS +0 WORKDAYS
Returns the first Wednesday during the same month as that during with the fixed date occurs, or the first
working day afterward if it happens to fall on a holiday.

1.1.3 Conditional statements

[DAY_OF_WEEK < 3; + 0 WEDNESDAYS; - 0 WEDNESDAYS]
Returns the closest Wednesday to the fixed date.

[IS_WEEKEND; - 0 FRIDAYS]
If the fixed date falls on a weekend, returns the previous Friday. If it does not fall on a weekend, returns
the unchanged fixed date. This differs from "- 0 WORKDAYS" in that it returns the fixed date if it falls
on a holiday but is not during a weekend.

[DAY_OF_WEEK < 3; + 0 WEDNESDAYS; - 0 WEDNESDAYS] + 0 WORKDAYS
Returns the closest Wednesday to the fixed date or the first working day after it if it happens to be a
holiday.

- FIRST_DAYS_OF_MONTH [DAY_OF_WEEK < 3; + 0 WEDNESDAYS; - 0 WEDNESDAYS]
+ 0 WORKDAYS
Returns the closest Wednesday to the first day of the fixed date’s month or, if it happens to be a holiday,
the first working day afterward.
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1.1.4 Comparison with current excel formulas

Current formula:
EA78-98
Can be expressed in proposed syntax as:
-98

Current formula:
WORKDAY(DL78;-60)
Can be expressed in proposed syntax as:
-60 WORKDAYS

Current formula:
= IF(WEEKDAY(DL80)=1;DL80-2; IF(WEEKDAY(DL80)=2;DL80-3; IF(WEEKDAY(DL80)=6;DL80-7;
IF(WEEKDAY(DL80)=4;DL80-5; IF(WEEKDAY(DL80)=5;DL80-6; IF(WEEKDAY(DL80)=7;DL80-1;
DL80-4))))))
Can be expressed in proposed syntax as:
- 1 FRIDAYS

As shown above, the basic examples are almost identical, butwhile the third original formula is quite
complicated, the corresponding new format shows a real advantage of syntax described in this document.

2 Reference manual

2.1 Syntax reference

Syntax is described in Extended Backus-Naur Form, a metasyntax notation used to express formal lan-
guages such as those used to program computers.

2.1.1 Quick guide to EBNF

In EBNF we defineproduction rulesto generate sentences that can be used in a language. Production
rules refer to other production rules or terminals.Terminalsare characters that will be visible in the final
sentence. They are enclosed in double quotes. Some examplesfollow:
word ::= "abc";
other_word ::= "bcd";
two_words ::= word " " other_word;
We defined three production rules, two of which expand directly to terminal and the last uses both termi-
nal " " and two previous production rules to expand to a terminal "abc bcd".

alternative ::= "a" | "b";
Can be either "a" or "b".

repetition ::= {"a"};
Can be "" or "a" or "aa" and so on.
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option ::= "a" [ "b" ];
Can be "a" or "ab".

grouping ::= ( "a" | "b" ) "c";
Parentheses can be used to group expressions. This production rule expands to "ac" or "bc".

2.1.2 Syntax of formulas described in EBNF

All whitespace characters are optional and will be skipped before parsing.

formula ::= {statement};
This means that formula can consist of zero or more statements.

statement ::= simple_statement | conditional_statement;
There are currently two types of statements: simple and conditional. They can be mixed freely.

simple_statement ::= direction_operator count [time_unit];
Many examples of simple statements can be found in section 1.1.1 on page 1.time_unitis optional and
defaults toDAYS.

direction_operator := "+" | "-";
Defines in which direction we should move. Minus stands for the past, plus for the future.

count ::= number;
Can be zero or higher. Zero will return unchanged date that was passed as argument only if it is day
described bytime_unit. If it is not zero will work just like a value of one (1) would.

time_unit ::= "DAYS" | "WORKDAYS" | "WEEKS" | "MONTHS" |
"MONDAYS" | "TUESDAYS" | "WEDNESDAYS" | "THURSDAYS" |
"FRIDAYS" | "SATURDAYS" | "SUNDAYS" |
"FIRST_DAYS_OF_MONTH" | "LAST_DAYS_OF_MONTH";
Units are days in calendar that match specific condition. Using simple statements we can move to one of
these days. Which will it be is specified bycountproduction rule.

conditional_statement ::= "[" condition ";" formula [";" formula] "]";

Any formula can be executed conditionally, even one containing other conditional statements. With sec-
ond semicolon comes “else” part of condition. It is optionaland defaults to +0 DAYS which leaves
argument date unchanged.

condition ::= parameter [ comparison_operator number ];
If comparison is omitted condition is considered false if parameter is zero or empty string
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parameter ::= "IS_WORKDAY" | "IS_WEEKEND" | "IS_HOLIDAY" | "DAY_OF_WEEK"
| "DAY_OF_MONTH" | "MONTH_OF_YEAR";
Description of those parameters can be found in section 2.2.2.

comparison_operator ::= "=" | "<>" | "<" | "<=" | ">" | ">=";

number ::= digit | ( digit_without_zero {digit} );
Number cannot start with multiple zeros.

digit_without_zero :== "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" |
"9";

digit ::= "0" | digit_without_zero;

2.2 Keywords reference

If the syntax proposed in this document is accepted by YPG, this section will contain an explanation of
every time unit and parameter of conditional statements that can be used in formulas.

2.2.1 Time units

To be documented.

2.2.2 Parameters for conditions

To be documented.
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